Photoreceptor Degeneration in Two Mouse Models for Congenital Stationary Night Blindness Type 2
نویسندگان
چکیده
Light-dependent conductance changes of voltage-gated Cav1.4 channels regulate neurotransmitter release at photoreceptor ribbon synapses. Mutations in the human CACNA1F gene encoding the α1F subunit of Cav1.4 channels cause an incomplete form of X-linked congenital stationary night blindness (CSNB2). Many CACNA1F mutations are loss-of-function mutations resulting in non-functional Cav1.4 channels, but some mutations alter the channels' gating properties and, presumably, disturb Ca(2+) influx at photoreceptor ribbon synapses. Notably, a CACNA1F mutation (I745T) was identified in a family with an uncommonly severe CSNB2-like phenotype, and, when expressed in a heterologous system, the mutation was shown to shift the voltage-dependence of channel activation, representing a gain-of-function. To gain insight into the pathomechanism that could explain the severity of this disorder, we generated a mouse model with the corresponding mutation in the murine Cacna1f gene (I756T) and compared it with a mouse model carrying a loss-of-function mutation (ΔEx14-17) in a longitudinal study up to eight months of age. In ΔEx14-17 mutants, the b-wave in the electroretinogram was absent, photoreceptor ribbon synapses were abnormal, and Ca(2+) responses to depolarization of photoreceptor terminals were undetectable. In contrast, I756T mutants had a reduced scotopic b-wave, some intact rod ribbon synapses, and a strong, though abnormal, Ca(2+) response to depolarization. Both mutants showed a progressive photoreceptor loss, but degeneration was more severe and significantly enhanced in the I756T mutants compared to the ΔEx14-17 mutants.
منابع مشابه
Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2
Mutations in the CACNA1F gene encoding the Cav1.4 Ca (2+) channel are associated with X-linked congenital stationary night blindness type 2 (CSNB2). Despite the increasing knowledge about the functional behavior of mutated channels in heterologous systems, the pathophysiological mechanisms that result in vision impairment remain to be elucidated. This work provides a thorough functional charact...
متن کاملDysregulation of Cav1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2
Mutations in the gene encoding Cav 1.4, CACNA1F, are associated with visual disorders including X-linked incomplete congenital stationary night blindness type 2 (CSNB2). In mice lacking Cav 1.4 channels, there are defects in the development of "ribbon" synapses formed between photoreceptors (PRs) and second-order neurons. However, many CSNB2 mutations disrupt the function rather than expression...
متن کاملMutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina.
Retinal neural transmission represents a key function of the eye. Identifying the molecular components of this vital process is helped by studies of selected human genetic eye disorders. For example, mutations in the calcium channel subunit gene CACNA1F cause incomplete X-linked congenital stationary night blindness (CSNB2 or iCSNB), a human retinal disorder with abnormal electrophysiological r...
متن کاملIncreased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness)
PURPOSE To determine whether constitutive signal flow arising from defective rhodopsin shut-off causes photoreceptor cell death in arrestin knockout mice. METHODS The retinas of cyclic-light-reared, pigmented arrestin knockout mice and wild-type littermate control mice were examined histologically for photoreceptor cell loss from 100 days to 1 year of age. In separate experiments, to determin...
متن کاملA new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease.
Mutations that affect calcium homeostasis (Ca(2+)) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca(2+) in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na(+)/Ca(2+), K(+) exc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014